I4AA-Sensitive chloride current contributes to the center light responses of bipolar cells in the tiger salamander retina.

نویسندگان

  • F Gao
  • B R Maple
  • S M Wu
چکیده

Light-evoked currents in depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs) were recorded under voltage-clamp conditions in living retinal slices of the larval tiger salamander. Responses to illumination at the center of the DBCs' and HBCs' receptive fields were mediated by two postsynaptic currents: DeltaI(C), a glutamate-gated cation current with a reversal potential near 0 mV, and DeltaI(Cl), a chloride current with a reversal potential near -60 mV. In DBCs DeltaI(C) was suppressed by L-2-amino-4-phosphonobutyric acid (L-AP4), and in HBCs it was suppressed by 6,7-dinitroquinoxaline-2,3-dione (DNQX). In both DBCs and HBCs DeltaI(Cl) was suppressed by imidazole-4-acetic acid (I4AA), a GABA receptor agonist and GABA(C) receptor antagonist. In all DBCs and HBCs examined, 10 microM I4AA eliminated DeltaI(Cl) and the light-evoked current became predominately mediated by DeltaI(C). The addition of 20 microM L-AP4 to the DBCs or 50 microM DNQX to HBCs completely abolished DeltaI(C). Focal application of glutamate at the inner plexiform layer elicited chloride currents in bipolar cells by depolarizing amacrine cells that release GABA at synapses on bipolar cell axon terminals, and such glutamate-induced chloride currents in DBCs and HBCs could be reversibly blocked by 10 microM I4AA. These experiments suggest that the light-evoked, I4AA-sensitive chloride currents (DeltaI(Cl)) in DBCs and HBCs are mediated by narrow field GABAergic amacrine cells that activate GABA(C) receptors on bipolar cell axon terminals. Picrotoxin (200 microM) or (1,2,5,6-tetrahydropyridine-4yl) methyphosphinic acid (TPMPA) (2 other GABA(C) receptor antagonists) did not block (but enhanced and broadened) the light-evoked DeltaI(Cl), although they decreased the chloride current induced by puff application of GABA or glutamate. The light response of narrow field amacrine cells were not affected by I4AA, but were substantially enhanced and broadened by picrotoxin. These results suggest that there are at least two types of GABA(C) receptors in bipolar cells: one exhibits stronger I4AA sensitivity than the other, but both can be partially blocked by picrotoxin. The GABA receptors in narrow field amacrine cells are I4AA insensitive and picrotoxin sensitive. The light-evoked DeltaI(Cl) in bipolar cells are mediated by the more strongly I4AA-sensitive GABA(C) receptors. Picrotoxin, although acting as a partial GABA(C) receptor antagonist in bipolar cells, does not suppress DeltaI(Cl) because its presynaptic effects on amacrine cell light responses override its antagonistic postsynaptic actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic inputs mediating bipolar cell responses in the tiger salamander retina

Postsynaptic receptors in bipolar cells were studied by focal application of glutamate and GABA to the outer and inner plexiform layers (OPL and IPL) under visual guidance in living retinal slices of the tiger salamander. Two different types of conductance change could be elicited in bipolar cells by applying glutamate to the OPL. In off-center cells, which had axon telodendria ramifying in the...

متن کامل

Characterization of displaced bipolar cells in the tiger salamander retina

In immunocytochemical studies of the tiger salamander retina, 17% of neurons in the outer nuclear layer did not label for recoverin, a photoreceptor marker. Lucifer yellow injection showed a population of cells in the ONL to be displaced bipolar cells, with axon terminals that stratified exclusively in the OFF sublamina of the inner plexiform layer (IPL), and predominately within the cone-domin...

متن کامل

γ-Aminobutyric acid transporter-mediated current from bipolar cells in tiger salamander retinal slices

About 10% of bipolar cells in salamander retina synthesize and take up gamma-aminobutyric acid (GABA), and may use GABA as a neurotransmitter. As GABA uptake is electrogenic, bipolar cells expressing GABA transporters (GATs) should give transport current (IGAT) to extracellular GABA. Using whole-cell patch recording, 28 bipolar cells responded to 30-200 microM GABA puffed to the axon terminals ...

متن کامل

Synaptic inputs to the ganglion cells in the tiger salamander retina

The postsynaptic potentials (PSPs) that form the ganglion cell light response were isolated by polarizing the cell membrane with extrinsic currents while stimulating at either the center or surround of the cell's receptive field. The time-course and receptive field properties of the PSPs were correlated with those of the bipolar and amacrine cells. The tiger salamander retina contains four main...

متن کامل

Pii: S0042-6989(97)00296-4

Physiological and pharmacological mechanisms of glutamatergic, GABAergic and glycinergic synapses in the tiger salamander retina were studied. We used immunocytochemical and autoradiographic methods to study localizations of these neurotransmitters and their uptake transporters; and electrophysiological methods (intracellular, extracellular and whole cell patch electrode recordings) to study th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 6  شماره 

صفحات  -

تاریخ انتشار 2000